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\ Abstract
Copy elimination is an important optimization for implementing functional languages. Though it is

related to the problem of copy propagation that has been considered in many compilers and also to
storage compaction, the term is used in a more general context where structured values can be updated
and the computation tree can be reordered. Because of these two additional possibilities, copy elimination

is a hard problem, being undecidable in general.

We propose an optimization approach based on abstract interpretation which uses fixpoint iteration for
computing address ezpressions. These address expressions supply the final target for a computation,
eliminating the need to copy values through intermediate resuits. Our work is in the context of a single
' assignment language called SAL. Our implementation has an operational model for computing address
expressions by using reduction rules. Using this, we show that copies present in divide and conquer
algorithms like bitonic sort and quicksort can be removed. We evaluate the effectiveness of these

optimizations, showing that in many cases, we can come close to the efficiency of an imperative language.
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Copy elimination with
Abstract Interpretation

K.Gopinath and John L.Hennessy
Computer Systems Laboratory

Stanford University a
1. Introduction :
Copy elimination is «n important optimization for implementing functional languages. Though it is A
related to the problem of copy propagation that has been considered in many compilers [1], the term is d
used in 8 more general context where structured values can be updated and the computation tree can be
reordered. Because of these two additional possibilities, copy elimination is a hard problem, being 4
undecidable in general. Copy propagation is adequate in imperative languages at intermediate 3
representation level since the programmer takes responsibility for avoiding any unnecessary copies in the
source language, such copies being considered a reflection of poor programming. In functional programs, ‘f
however, the lack of variables in the language requires that a value incrementally different from some 5
structure be expressed as a new structure, This may involve a copy depending on the program semantics i
and the implementation. Copy elimination also differs significantly frow storage compaction where the
issue is the computation of a program in the smallest amount of storage. An effective storage compaction :
scherne might avoid all the copies at the same time but likely te be expensive computationally, since N
attempt is made to assign even unrelated names into the same storage space, partially or fully, as long as 5
they have non-overlapping live ranges. The latter strategy is useful in the case of limited resources like .
registers but minimizing main memory is of less value. ;
In this paper, we will use the technique of abstract interpretation for copy climination.  Abstract '
interpreiation is a technique that was pioneered by Cousot and Cousot [5] for deriving properties of .
programs. Using this approach, Alan Mycroft [12] considered the problem of detecting when a c¢all-by- .
need argument can be turned into a call-by-value argument in the interests of efficiency. Hudak (91 in his ':
recent. work has used the technigue successfully to deteet updates that can he doue in=place by reference ‘
counting. We will use abstract interpretation to climinate copies also. This approach involves fixpoint X
iteration for computing address expressions i the presenee of peeursive functions,  These address 3
expressions can be used to compute the final target addpe~ for o comppertation, eliminating intermediate .
copies. The insights gained by this approach will be used to compute adidress expressions using reduction '
rielex for g barge subset ol a single assignment bingoage calied SALD We will give o baiel Jocsviption of '
SAL alter deservibing how abstract interpretation can be vsed to clininate copis This approach hias been :
used to pemove copies i divide and conquer problems fike qoickort and Livonie <art and we report times y
3
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which are very close to those for imperative languages like Pascal on a set of small, but tough

benchmarks,

2. Abstract interpretation

Let the standard denotation of a function definition be € f 3 : D — R. Abstraction functions are
then defined to "simplify* the domains of D and R. If two such functions Abs1: D — Al and Ab2: R —
Ag2 are chosen properly, the function f : D — R induces another interpretation <€ abs-f 3 : A1 — A2
which can be used to answer some of the properties of f. This is the central! idea of abstract
interpretation. A good example is the function type which abstracts just the type aspects of a function.
There has been considerable literature on using abstract interpretation for computing strictness of

parameters.

We use the abstraction Addr for both Abs! and Abs2 in our application with both .41 and A2 being the
domain of address expressions. The abstraction Addr maps names into their symbolic addresses and
expressions into address expressions. Analogous to type expressions, address expressions describe the
address of an expression in terms of the parameters. These are similar to the effect-declarations of
Schwarz [13]. The mapping abs-f gives the properties of sharing that is possible between arguments and

the result of a function.

3. Assumptions

We assume a simple language similar to the one considered by Hudak [9]:

Program is a set of recursive function definitions (without higher-order functions)
ji:= )\;::l,...,;tn body‘.

with main program being a call of j', with zero arguments.

The predefined Tunctions p; are as follows:

e standard arithmetic, boolean and array selector operations
e conditional: if p then ¢ else a abbreviated as if{p.c,a)

e create array function: mka(bounds, h) where bound= is an integer range and h is some
function which waps bounds to some image set..

o upibite function: updi -\ v o) whare Vs anarray, 7 s a logal index o 24 and mos of the same
type as A's elements and its valoe is same ax the areay A exeept at the /th position where it is
(A

o ~cquence funetion: seq{ A Lon) where Vis an avray and 1 ad g ave leaal indices into A and s
meaning is sanwe as the sobareay of 4 starting ot index [ oand ending at o me This will e

abbreviated to AV
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e catenate function: cat{A,B) where A and B are sequences. For purposes of optimization and
the non-standard semantics that will be shortly developed, it has the following meaning: if
A=q[l..m| and B=a]|n..p| then cat(A,B) is a[l..p] if m+1=n; otherwise, a newly created array
¢[l..m-l+1+p-n+1] where c[l..m-l+1]=a[l..m] and ¢[m-I+2..m-I+1+p-n+1]=a[n..p]|

We adopt the convention that an identifier in bold italics represents the address expression for the
corresponding identifier written in italics. We adopt the same convention for representing terms in

standard and non-standard semantics.

4. A Denotational model

We use a denotational model for the simple language to show that fixpoint computation of address

expressions is possible and that they terminate.

4.1. Preliminaries

We adopt a slightly modified version of the notation in [9]. Double angle brackets are used to surround
syntactic objects, as in E<ezp®. A new environment is created by (e, /z,,...e /x | which is abbreviated
to {e;/z,] when the subscript bounds are clear from context. The notation A* -~ B denotes the domain
B+{(A— B)+(A—~ A— B)+ - - - We also assume that all domains are "lifted* as necessary, i.e., they are
provided with an unique least element. We will refer to each of them by | instead of different ones for

each domain.

4.2, Standard semantics

Let D be some suitable domain of basic values. For the standard semantics, we have the following

domains:
¢,p € Con {constants including primitive functions)
x € Bv {bound variables)
Je v (function variables)
body,e € Exp {cxpressions)
where e e | | ple e ) | Nle,e )
pr € P’rog (programs)

where pris=
| /"(.r”,.,.l."kl) szt I)I)ll”l

f,,(.r,,l..‘.r_,_ } = body,

J (e o ) lu)f(y” }

"y nk
it
Define two environments five andd foe Tor bound and Tunction variables, respectively. Let 150 be the
) ’

sepailic: fupetion Tor giving meaning 1o progeams and 15 and iy correspondingly for expressions and

constants. The semantie aleebea is o= follows:
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Jve € Foe=Fv—=D* =D
bve € Bve=Bv— D
E'p:B'og — Fue
E:Exp — Fve — Bve — D
K:Con — Ezp* -+ Fve — Bve — D (assumed given)
The semantic equations are as follows:
E <« {{z}s2 ) =bodyJi:l..n} > =fue whererec fve= [ E < body > fve bve / [}

E <€c» fve bve = K € ¢ > fve bue

E€z> fvebve =bve € 2 >

E « p(cl,...,en) > frebve=K € p>» (E<K e, > fue bue), ... (E e, > fue bue)
E <« f'(el,...,en) > fve bve= fve &K [, (E € ¢, > fue bve), ... (E K ¢ > fue bue)

4.8. Non-standard semantics
Given a program, the non-standard semantics derives a set of recursive equations for the address

expressions of functions which can then be computed by fixpoint iteration.

Let G be a set of names for anonymous arrays created by mka, cat, upd array operations and also
arrays created by if expressions so that there is a 1-1 correspondence between occurrences of these array
creating operations and the set G. Let each of these operations be labelled with an integer value so that

the symbolic name lor the 1 th occurrence of any of these operations considered together is 9; Also let
HA) be the powerset of A.
z = Addr(x) for each z € Bv U G
X = {z|lr € BvuU G}
G = {z]z € G}
RN_ be the subscript range of an array z; assume that z{RNz] is always rewritten as x
A = {z|l.m]larray « € BvU G;lm € RNI} - X; so that A and X are disjoint.
AddrExzp=={1. T} URAX)U AA)
AddrFEzp is a pointed cpo with the following partial ordering:
L “=a<=T,a € AddrExp
ac=hbifa C b

1 and T are the empty and universe set respectively. We define two monotonic operators u and » (used

for defining the semantics of if and cat respectively) over the domain Addr[Zap as follows:




4
' nlab.g): :
=g Jaa C a & bb C bsuch that aa € AX) and bb € HAA) & vice-versa
. =g J aa C a & bb C b such that aa € AG) and bb € AX-G) & vice-versa

=g  Jaa Ca & bb C b such that aa={z|l..m]}, bb={z[n..p|}, ({7 n or m 7 p)
=g JaaCakhb C b such that aa=:{z|l. m]} bb={y[n..p|}, z#y & zy € G
=g 3 aa § a & bb g b such that pu(aa, bb,g) € G

=a Ui b otherwise

{a,b,g)
={z{l.p]} il a={z{l..m]} and b={z[n..p}} and n=m+1.
=g Jaa C a&bbC bsuchthataa € AX)and bb € AA) & vice-versa :
=g JaaCakbb C b such that aa € A G) and bb € AX-G) & vice-versa ¢
=g Jaa C a&bbC bsuch that aa={z|l.m|}, bb={z[n..p|} & n 5 m+1
=g 3aaCa&bbesuchthatu\aa bb, g) € G
=g Jaa C a & bb C b such that aa={z|l.m]}, bb={y[n.p|}, z#4 y & oy € G

| is the bottom element for the cpo, signifying null information. If the two operands are incompatible,

the symbolic address for the anonymous array (passed as g) is returned.
\
A}
We have the following new semantic algebra: '
Loe=AddrExp
Bve=Bv — Loc :
St=Lo¢ — D 4
fve € Fve=Fuv— Loc* — 5t — (LocX.St) H
EEP:Prog — Fuve d
* EE:Ezp — Fve — Loc :
-~y » L)
KIK:Con — Ezxp* — Fue — Loc :
k .
The semantic functions for the abstraction have some unusual features. They depend on the standard :
semantics also. Hence, a product construction is needed to describe the semantics. For simplicity of :
presentation, we just present the non-standard semanties, the product construction being understood. We
will discuss how to eliminate this dependence on the standard semantics since dizcovering properties at
compile time for optimization purposes is not possible otherwise.  In addition, we have the problem of .
L]
non-termination in the standard semanties We use the notation lab - for the label corresponding (o .
A
expression . .
El_’fp < {f'.(.tl,....‘cm)::-bodyl.li:Ln} 3 - fve whererec fve  IlY & body > fve A
L1
ElZ &€ ¢ > fuve T P
EE€ x> fve ~— O
ININ < arith-bool > 1 ~ fve T
CE e ) > fve fve <« [ (I« o> fve) L LIT< > fue)
|
i 1]
g
[ )

- - my - g w g vy e e o e .
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KK <€ if > cond coneeq alt fve =
let
t:=0CE < conseq » fue
t2:==E'E < alt > fuve .
in
end
KK < cat » A{l.m| Bn..p| fve =
let
=F & 1> fve bve
mm:=FE €« m > fve bve
nn:=E € n > fve bve
pp:=FE & p > fve bve
t,;=(EE « A > fue)|ll..mm]
ty=(EE <« B > fue)nn..pp]
in -
Ut 9, )
cat
end

KK <« mka > bounds h fve = 9.6
mka

KK € upd » At v fve =
let

t=FEE € A > fve

in

if Ais not live then t else g,
ab
upd
end

(*liveness can be deduced by using Hudak’s denotational semantics for reference
counting by using a product construction; sce discussion below*)

4.4. Discussion
u or v cannot be simplified to g if the subsets aa or bb are both from HX) or A A). Consider the

following function:
function Q(A,B:arr):arr=if cond then A else [3

Q=M\A B. |A. B}
Since @ can be called with arbitrary parameters 4 and 13, it is not possible 10 determine the address
expression of the function body in a form simpler than { A, B}, If this is simplilied to g. this may give us
pesstmistic information about what can be shared i ense @ s called with actual parmmeters suel that
A-==B. It might be thought that the problem can be elimnated H Tunctions are in=-lined bit we see a

stmibar problem in cthe Tollowing recorsive example (which cannot bhe in-lined).

CO N o N AR R




Jla,b,e)=
if condl then cat(a,b)
elsif cond?2 f(upd(a,i,vi), b, hi(e))
else f(a, upd(b.j,v8), h2(c))
f=xabc. v(a,b,g,, ) U fla.b,hi(e)) U f(a,b, hele))
cab
The expression in the then part cannot be simplified in the abstract interpretation to g. If fis called in
the form: flA[l..m], Bim+1..n],c) with A=DB, then we get pessimistic answers. The simplification to g
results in the [ailure to propagate information across function boundaries. This is not just a theoretical

possibility; the bitonic sort program has this property. A similar problem exists in strictness analysis [8].

We need to make some small changes to Hudak’s semantics for reference counting: If eat(A[l..m],
Bin..p]) can be updated in-place because A=B and n=m-+1, the reference count for A does not decrease.
If this is not the case, the reference counts for both A and B are reduced by one, just as in the standard

semantics.

4.5. Elimination of the standard semantics

We next discuss how to eliminate the standard semantics from the equations. Consider the equation for
cat. One of the conditions for computing v is (r=m+1). Instead of evaluating this by using the standard
semantics, it can be checked by symbolic analysis il the syntactic expressions for n and m are of a
particularly simple nature, namely induction variables. The condition n=m+1 can be checked by
matching subtrees of n and 1. If the expressions for n and m do not satisfy the simple syntactic criteria,
the value false is returned. The _abstraction, in this case, errs on the safe side. Also note that
computation of Il and pp is not necessary. Similarly, the check (I 5 n or m £ p) for computing ji can be

carried out symbolically. The new semantic equation for cat is as follows:
KK <« cat » A|l.m| Bln.p| fve =
let
t,=LF < A > foe[€ | ». .« m »|
t,=LFE <« B> fve[€ n ». < >
in
M1t ty, i, t)

end

4.8. Some results

Theorem 1: Vor any finite program pr& Prog (with bounded arvpays). the lixpoints

corresponding to f€ Fv are computable.
Proof: Addrliep is a linite cpo. Also, [51, NIV ace constrocted from monotonie operations. Henee fue
can be efféetively computed by fixpoint teration ~tarting with the hottom ciement and iverating vl vhe

least upper bound i~ reached

Theorem 2: If 1the fixpoint ~olution of f’ Iy s ~ome zothen the hody Sb e Tinetion ean

g
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be targeted to # and z can be updated in-place in the body of f; to give the result of the
function.

Proof:The proof is by structural induction on body. Since f is a fixpoint, f‘.(z)=F(f'.)(z= x.

Consider the following cases for body, in the semantic functions EE and KK:
z: If body, = =, the result is immediate.

h(cl,...,en): f; has z as fixpoint only if the abstraction of A maps some argument ¢, into z. By induction
hypothesis, h’s result can be obtained by the update of this argument. Hence f/s result can also be

obtained from the update of the same argument.

if(cond,conseq,alt): J; has z as a fixpoint only il both arms of the conditional map to the same address
expression. From the induction hypothesis, it follows that the result of the function is given by the update
of the parameter = if cond is true and also by z when cond is false. Hence the result is given by update of

Z.

cat{A[l. m|,B[n..p]): f. has z as fixpoint only if both A and B are mapped to x and n=m+1 with / and

p as the lower and upper bounds of r. Hence the result of the function is given by update of x if cat

function is in-place for this condition.

upd(A,i,v): Again, f‘. has z as fixpoint only if A is mapped to z. If A is not live then & can be updated

to give the result of f.
mka: This case cannot give rise to £ as a fixpoint, hence vacuously true.

This completes the theorem’s proof by structural induction.
Theorem 3: The abstraction is safe.

Proof:. The proof is by structural induction which is omitted.

4.7. An example
To illustrate the non-standard semanties given above, consider the program for reversing the clements
ol an array:
funetion ~swap2?(\:arr; AL, \jiarrclon ;1 integer; j integer) [arr=

upd(upd (A, 7, 4D, ..\

function rev(ip, g arrdicm, v wrr, 1, uinteger) -
“if n=1 or /=n/2 then -\
else re (A {n-r+2), A[i=11, ~wap2CN, Ap, Ny, n-i+1, 0, -1, )

Woswap? s to be amplemented gn-piace two addinonal pavamters are needed bheeanse ol the Lack ol




assignments. When the abstraction Addr is used, the new interpretation of the two equations for swap2

and rev by the non-standard semantics is as follows:

function swap®(A.arr;As, Ajyarrelem;i:integer;jinteger)arr= {A}

function rey{Ap, Agarrelem;A:arr;i, niinteger):arr=

{A} U {revA[n-1+2], Ali-1], A, i-1, n)}

Since swap? occurs as a leaf in the call-graph, it is advantageous to find the interpretation of swap?
before rev. The new interpretation of swap® is computed to be just A by using Hudak's semantics for
reference counting whereas the interpretation for rev has to be found by fixpoint iteration as follows:

rey =

rev:={A} U | :={A}

revy={A} U {A}:={4)
Hence, abstract interpretation of rev under mapping Addyr is just A. Hence the result of the function can

be given by updates on the parameter A from Theorem 2.

4.8. Applicability to other functional languages
We discuss brielly the applicability of the approach we have taken for copy elimination in the context of

features that are not present in the simple language considered.

Call-by-need /call-by-valuclazy cvaluation: A perusal of the non-standard semantics shows that these
evaluation mechanisms make their effects felt through the computation of liveness of names. Hudak and
Bloss [2] have considered the problem of computing the order of evaluation of subexpressions in the
context of call-by-need parameter evaluation mechanism and this can be used for determining liveness.
Lazy evaluation, which differs from call-by-need in evalnating an expression more than once if needed,
presents considerable difficulties. If infinite structures are present, the structure is live and lazy evaluation
is needed. We, therefore, need analysis to detect if a structure necessarily has to be evaluated by lazy
evaluation and analysis to couvert lazy evaluation to call-by-need or other forms of evaluation.

Wadler [14] considers some of these issues for a limited class of situations arising in practice.

Higher-order functions: Higher order functions could be handled il Hudak’s semantics can be extended
to higher-order functions {(which has not heen done yet), Even with this assumption, termination can no
longer be guaranteed. To see why, consider the simple language extended with higher order Tunctions.

The new domains are a- follows:

e, p€Con (constants including primitive functions)
f'.,l(unl)(lu € ' {function variables with bodies and anonymous Ininbda expressions)
o e B (bound variables including function parameters)
body.c € INrp (expressions)
B . [ | v Lo vy
wheye oo cop |/.\tl..,lu;lj\.l...«””,\.«:

boe meludes formal parameters which are funetions whereas foo also mcludes anons moos Laniheda

abstractions. \We necd additional semantic vules to take care of bambdda abstinetions:

v LT L DA
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EE< [, > fve = f,
EE € )\z.e » fve = A\z. EE <€ ¢ » fve
FE <« /(cl,...,cn) » fve==( EE & [ > fuve) (EE < ¢, > fuve ) .(EE < e > fue)

The above semantic rules cause the evaluation of the function part of an application since there could be

anonymous lambda expressions.

Let us see why there can be non-termination. Consider the following program:

JCh,a,b.0)=
if cond then ACh.hCh,a,b,c) ,b,¢)
else f(h,upd(a,i,v1), upd(b,j, v, h(c))

Using the non-standard semantics, we have the following fixpoint iteration:
=1
fl:={h(h,h(h,a,b,c).b,c)} U L :={h(h,h{h,a,b,.), b,c)}
f,_,:={h(h,h(h,a,b,c), b,e)} U {h(hA(h,a,b,c),b,c)}]:={h(h,h(h,a,b,e), b,c)}

Consider now the self-application of f by substituting f itself for h. The fixpoint is not defined because of

the non-terminating computation involved,

5. Copy elimination in SAL
SAL is a single assignment lanfuage defined at Stanford (3] providing iteration, parametric types and

streams with scoping mechanisms similar to Algol languages.

We briefly describe some of the constructs of the SAL language:

e simple let-expression: allows for bindings of values to names.

e array former: specifies an order-independent itera‘.on (for all) which produces an array
result: for i:..m be exp which is similar to mka(bounds, h).

e redefining let-expressions: implements iteration with loop dependencies; the semantics are
verv close to what is found in VAL and SISAL. The iterative statements have a set of initial
value definitions. a corresponding set. of redefinitions used to define new values on every
iteration, a loop control, and a result value defined in terms of the final values of the names in
the redefinitions. To be able to specify the redefinitions without any implied sequencing, the
keyword old is used to refer to the value of a name in the previous iteration. Jvery redelining
let-expression can be cewritten using only tail-recursive functions,

e constructor: creates structured values. similar to aggregates in Ada.  Constructors are often
used with a left hand side consisting of nwltiple components as in ML and Algol6®
[ ]

e new array creates a valae which matehes the argument array but with one component vidne
rhanged: Aa- v wlieh is same as upd{A,4,0)

e record field selector array element selector: ~clectar operations in records and arrays

e insert. expression: the reduction operator stmilae to the  operator e 1P




10

The atomic datatypes are integer, boolean and reals. The structures present are arrays, records,
diseriminated unions and streams. For simplicity of presentation, we deal mainly with arrays but many

of the issues discussed typically arise in records and discriminated unions also.

6.1. Computing Address expressions of SAL constructs

The address expression for a simple let-expression is easy to state but redefining let-expression are
difficult to handle in the presence of optimizations (sharing between new and old values which requires a
form of dependency analysis considered in vectorizing compilers) needed to implement it efficiently. This
makes computation of the address expression using denotational semantics difficult, We will, therefore,

develop an alternate approach to tackle this problem using reduction rules.

Conatructors enable more than one value to be returned. This is especially useful for implementing non-
locals by returning updated non-locals alons with the result of the function value. We need an additional

semantic equation:
E‘E‘([el,...,c"])/vers[EE<5l>fve,,..,EE<cn>]ve]

The domain now has a more complex cross product structure.

5.2. Computing address expressions using reduction rules

A reduction rule describes how the address of an arbitrary expression can be reduced into an address of
a simpler expression. FEach reduction rule has two components, a eond and a reduction rule, the
reduction being performed only if cond is true. Define terminal cxpression as the irreducible term of an

expression.,

A set of reduction rules is presented in Figures 5-1, 65-2. These rules are not complete and do not take
_into aceonnt. many subtle details Lhat are important in optimization. Due to lack of space, we also do not

consider dependent iterations, though we consider examples which have these constructs.

5.3. Examples

Consider the following program:

--initialises all the elements of an array.
type arr=array{1..m] of integer,
function /nilCa arr;.c,n;integer) .arr=if n=0 then « else mit(u:n=->r,r,n-1)

Lot us compute the address expression of the funetion hody .
Addr(if 1=0 then u else init(a n->r,r,n-1))
=>if n=0 then Addr(«) else Addr(inilCu:in->4,0r,0-1))

Heve, we dave sieed the folloving shightly different yale Tor conditional, foe prrposes ol esplanation

Addr(if condilion then N else V) if condilion then Addr( N else Addr())

Nomore peduetions s pos-ible nndees e know that et cain apdate e Bl argament to e te genlt
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1. Addr(if condition then X else Y)=> Addr(X), if Addr(X)=Addr(Y)

2. Let f=X\(a,b,...) 2zp and f=\.a,b,...) a-exp
Then Addr(f(z,y,...))=> fla-exzp)|Addr(z)/a,Addr{y)/b,...]

3. Addr{for i:l..h be Ali+c])=> Addr(A)[l+c..h+c], ¢ a constant

4. Addr(for i:1..n be if i=1 then ¢ else A[i-1]}=>> Addr(A)[1..n], il A is not live and if
loop is executed in the reverse order(from n to 1)!

5. Addr{[exp expy....czp |}=>> |Addr(exp ). Addr(ezpy),..., Addr(ezp )]

6. Addr(cat(A[L..h],B|m..n)))=>Addr(A)|l.n], if m=h+1 and Addr{A)==Addr(B)
7. Addr(A:i->v)=> Addr(A), if A is not live.

8. Addr(A.bi->v)=> Addr(Ab), if Ais not live

9. Addr(Ali]:7>v)=> Addr(Ali)), il A is not live®
Figure 5-1: Reduction Rules in the absence of assignhments

1. Addr(let definitions in value-expression end)=>> Addr(value-expression)

9

. if an assignment A:=ezp is in a simple let-expression, then Addr(A)=>Addr(exp)
unless the terminal expression of Addr{exp) is a name and it is live in the reordering
chosen for the definitions and rest of the program graph.

3. if a parallel assignment [ll,...,l'.,...]:-——-c;cp such that Addr(ezp) = > [rl,...,r'.,...] occurs
in a simple let-expression , then for each i, Addr(l)==> Addr(r) unless the terminal
expression of Addr(r) is a name and it is live in the reordering chosen for the
constructor and the rest of the program graph.

Figure 5-2: Rules for Assignments in simple let-expression

Interprocedural analysis is required to compute this information here and also in more complirated
examples whiere non-locals are implemented by pascing them as parameters,  Proceeding with this

information, we dervive the following:

=>if n=0 then Addr(«) else Addr(u:n->r)

assuming Addr(init(u,i,n))=>Addr(a)
=>if n=0 then Addr(u) else Addr(«) --since « is not live
=>Addr(a) --by rewriting conditional

Henee we ean prove the consisteney ol the aasumption thae the funetion result ean bee shared with the Tirst

argiment. This optimization which makes the ve bt and the fiest argiment slire storage tnrns the value

1.
i Just b i e sl e :f"ll"l"l' ripls

4
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parameter into a var parameter .nd at the same time converts the function into a procedure. Before this
optimization can be implemented, we need to check that the array a is not live in the callee after its

transmission as a parameter.

To illustrate the rules for assignment in simple let-expression, consider the following fragment from the
puzzle program. Constructs that have not been considered so far have been rewritten using functions and

some simplifications also have been effected.
function place (i: pieceType; 3. posstion;
puzzle: pustype; picceCount: pelype) : placelype =

let
temp :integer : =class [1]
plim: position := pieceMaz [i]
puz: puztype .= letFunction(puzzle,plim,i,))
pe: petype = pieceCount: temp —> pieceCount [temp]-1;
result: position := leastFunction(j, size, puz)
in [result, puz, pcl
end

Assume it has already been discovered that Addr(letFunction(z, p, i, j)) => Addr(z) and
Addr(leastFunction(j, k, )) => Addr(j). We would like to target the assignments and also find the
address expression of the function place. The first two definitions do not cause any interesting storage
sharing to happen. The third definition can be targeted so that Addr(puz)=> Addr{puz:le) since puzzle
is not live in the function after this use. No reordering is needed since this is the only use of puzzle. The
new-array can be evaluated in-place since pieceCount is not live. Hence, Addr(pc)= > Addr{pieceCount).
Finally, Addr(result)=_> Addr(j) from the address expression for leastFunction, since j is not live in
the function if the assignment for puz is evaluated before the assignment for result. The address
expression for the function place is Addr([result, puz, pc]) which can be reduced to [Addr(j),
Addr(puzzle), Addr(picceCount)]. Notice that all of them involve formal parameters of the function
place and this signifies that the function place returns as result some updated version of these formal
parameters. IT copices are to be eliminated, these parameters can be changed into var parameters once it
has been shawn that the actual parameters of the function place are not live in any invocation. It might
be advantageous to restrict conversion into var paramaters Lo structured values only to lessen some of the

implementation difficulties encountered when this is attempted for sealars.

8. Fixpoint computation using reduction rules
Fo extend the method of computing address expressions wsing fixpoint iteration developed for the =imple
Language in Section | to SAL. we need some modifications in the semanties. Fhe most important is the

presence of wames other than parameters, both loeal and non-focal.
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6.1. Extensions

The new domain AddrEzp is given by { | , T} U AX U Y) U AA U B) where
Y={yly is a local name}
Y={yly is a local name}
B={y[l.mlly € Y, yisan array and im € RN} - Y

The operators i and v have to be extended with the following cases:

#(a,b,g)
=g 3(@aCal&kbbCb)&aa € AY)and bb € AB) & vice-versa
=g (aaCakbbCb)&aa € AY)and bb € HA) & vice-versa
==g 3(aa Ca&k bt Cb)& aa € AX) & bb € AB) & vice-versa
= u(Addr{a),Addr{b),g) if a or b € AY) U FAB) &Addr{a) or Addr(b) can be reduced
= [s(pyqp9)l:1.n] if a=[pJi=1..n], b=[gli=1..n] & g=[gi=1..n]

a,b,g)
= {Addr(a),Addr({b),g)if a or b € AY)U AB) & Addr(a) or Addr(b) can be reduced
Since p is associative, we will also use it for arbitrary number of arguments. The domain AddrEzp still

renains a cpo and ensures that the fixpoint computation always terminates.

Define Resulits of an expression as follows:
Results(let definitions in value-expression end)=Results(value-cxpression)

Results(let initial definitions
while/for cond do
rede finitions
giving value-expression
end)=Results(value-expression)

Reasulta(if cond then c¢ else a)= U( Resulta(c), Resulte(a))

For other expressions, Results(cuxpression)={cxpression}
The Results of a function body returns all the syntactic expressions that are embedded in let-expressions

or conditionals which may be returned as the value of the function.

8.2. Algorithm

The first part consists of the propagation of address expressions by fixpoint iteration. The address
expression of each function is first set to | . For cach function (in a topological order, if possible),
compute g of all the members of the set. Results( f.hody) mapped by Addr. Set the Addr(f) equal to
this value and propagate this information at all the sites of the Tunction call by provisionally sharing all
the names that are in the same subsets in the address expressions, It has o be provisional since additionai
iformation might cause some set of sharings to be inconsistent which then have to be undone.  Repeat

until there are no changes in the Addr exprossion computed for each function.
.

Next, all the actuals corresponding to the parameters that will be updited have 1o be cheeked for non-

Hiveness, Finally, the provisional sharing between results and paramters made in (e previons stiges are
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Let fList be the list of functions.
Set the address expression of each function f.Addr to | .
Compute a topological ordering for fList if possibled .

change:=true

while change do

change:=false

for each function f € fList in the topological order (if possible) do
mapEz:=p({Addr(results )| i=1..n & results, € Results(f.body)})

T MR

diff ==mapE2-f Addr
if diff % nil then
change:=true ¢
J.Addri==mapEx i
Propagate this new value at all the call sites of f .
endfor
endwhile v
Figure 6-1: Algorithm for computing address expressions of functions 3
made final using the information obtained. g
8.3. An example: counting permutations ¥
il
To illustrate an example of fixpoint computation for address expressions, we present the function y
Y
permute which counts the number of permutations of the elements of an array (Figure 6-2). The =
Reaults of the function body of permute is given by { [A2, petr2 + 1) , [A, ctr + 1] }. Mapping f,'
Results by Addr and computing mapEx gives the address expression as [{A} U {A1}, {etr} U "
{pctr}]. Here we have used the information that A2=:- A% and pctr2=_>pctr. This information has :
to be propagated provisionally at all the sites of the function call: hence Al shares storage with A and .
petr with ctr. Similarly A3 shares storage with Af{through old Af). Furthermore, A2 shares storage :
I
with A1, petr with petr2. If we now compute the Addr expression of the function body of permute. all !{
4
the Results get reduced to {{A}, {ctr}]. We now have found the fixpoint. for the address expression of .
the function permule. -
|}

6.4. Divide and conquer problems

Pt

. . . o . ]
A very important subcase of interprocedural analysis occurs in divide and conquer algorithms, Such K
algorithms have signilicant opportunity for parallelism, but steaightforward implementations may v
produce a significant number of copies, thus losing any performance advantage. $
Consider a schema for divide and conquer problems using arrays as the data stracture and assuming ¢
that the results ean be combined by stmple catenation (using the function cat): .
0
]
2
Wothere aee predoeible oveles any ordering would do Lt convergener amght tabe oneee !
(U
]
» B
.
.
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type permType=record X:arr; Y:.integer end

function permute( n:integer;A:arr; ctr:integer) :permType=
if n <> 1 then
let
AL:arr; pctrf:integer;
[Ag, petrg) :=
let
Al:arr;petr:integer;
[A1, petr] := permute(n-1, A, cir);
k:integer := n-1
while ¢ >= 1 do
k:=o0ld k - ;
AS:arr;
[A8, pctr] := permute(n-1,swap(old Al ,n,old k), old petr);
Al := swap(A8, n, old k)
giving (A1, petr]

end
in [A2, petr2 + 1]
end
else [A, ctr + 1]
end;

Figure 6-2: Program to compute the number of permutations of an array

f(A:array[1..0] of T):=
if I=1 then h(A)
else cat(f(for ¢:1..0" be A[7]), f(for i:1..1-l’ be A[l+i]))

Since the base recursion involves the single element of the array, the function body can be evaluated
without using more than O(l) space, il it can be proved that there is no overlap in the parameters passed
to the recursive calls of f. That is, there is possibility of sharing amongst the parameters among
successive calls to £, if we show that there is no overlap in the elements accessed by the array former in
the argument. Realization that this operation can be done in place leads to a very eflicient program since
the non-optimized program has to allocate and deallocate arrays at each level of the recursion in addition
to the copy of the result from one level of the recursion to the next. Furthermore, if we assume that cat
does not allocate storage or perform a copy if the objects are already adjacent. then we can eliminate the

temporary storage and copying on return.

Given a set of recursive and non-recursive functions which implement a divide and conquer algorithm,
we need to [ind out whether in-place modification of the datastructure is possible and <afe. To do this.
we peed to find out how input datasstructure is subdivided and how the result is composed. Computing
the address expression for each function delinition gives exactly this information These address
expressions deseribe how the address expression of o function result is delined in terms of the address

expressions Of s arguinents, The fixpoints for the addresses of the functions are compnted by iteration




16

and by use of the reducing rules to simplify the expressions of the function bodies. However, type
parameters make it possible to cr:ate type uncheckable expressions by using non-terminating function
applications and looping construcis when defining index ranges for arrays. This may prevent address
expressions to be computed. If index ranges and indices are assumed to be of a restricted syntactic form(
for example, linear induction variables) for which symbolic analysis is helpful in determining simple
algebraic properties and identities, the address expressions may be computable. This process is most

easily understood from the viewpoint of an example (Figure 6-3).

--n ig a power of 2
type arr(n.integer)= array(l1..n] of integer;

function reverse(X:arr(n)) arr(n)=
if n=1 then X
else
let A:arr(n) =X
for i:1..n/2 do
A:=(old A:i->old A[n-i+1]) :n-i+1 ->old Al[i]
giving A
end;

function sortbitonic(X:arr(n)) :arr(n)=
if n=1 then X
else
let A:arr(n) =X
for 1:1..n/2 do
A:=if old Ali] < old A[i+n/2] then old A
else (old A:i->old Ali+n/2]):
(i+n/2)->0ld A[:]
giving
let
lower:arr(n/2) := for i:1..n/2 be A[i];
upper:arr(n/2) := for i:1..n/2 be Ali+n/2];
in eat(sortbitonic (lower), sortbitonic Cupper))
end
end

function merge(X:arr(n) ;Y:arr(m)) rarr(n+m)= o
sortbitonic Ceat (N, reverse(Y)))

function sort (X :arr(n)) jarr(n)=
if n=1 then \
else
let
lower arr{n/2) := for (:1..1n/2 be N[/];
upper arr(n/2) := for i:1..1/2 be N([i+n/2]),;
in merge Crart (ower) , soel Capper) )
end

Figure.ﬂ-.'l: IBitome sort
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Consider the function sort. It is clear that X can be sorted in place without any additional array storage
or any copies. Determining that this is so in a compiler is a non-trivial matter. This depends on detecting

the following in the process of proving consistency.

1. lower and upper are nonoverlapping (i.e., 1..n/2 and n/2+1..n are non-overlapping)

2. the parameter X and the result of the function sort ¢can share the same storage.

The last condition is the most complex. We show the initial equations that are written for the address
expressions, and the simplification of the equations. Note that we require other optimization steps to

occur to achieve the desired resuits. These steps are noted.
reverse
=DAX. X U Addr(redefining let-expression)
=230 X. XU A
=22X. Xu X
=2\X. X

Hence reverse(X) can be done without using extra arrays. Now, consider the function sortbitonic —

abbreviated as sb.
ab
=>)X.X U Addr(redefining let-expression)
=DAX. X U Addr(simple let-expression)
=DAX. X U Addr(cat(sb(lower), sb(upper)))
=>AX. X U v(Addr(sb(lower)), Addr(sb(upper)).g,, t,)
ca

=2AX. X U v(sb(Al1. .n/2]), sb(Aln/2+1..n]),9,, )
cat
=AX. X U v(eb(X{1..n/2]), sb(X[n/2+1..10]) N TR
cat
--coalescing of A & X

The fixpoint iteration is as follows:
sby=2X. |
8b:=AX XU L:=MXX
8b, =AX.X U {X[1..n/2], X{n/2+l..n],glabmt):=x

Hence, Addr(X) is a lixpoint solution for Addr(sh(.\X')), and similarly, Addr(\'} is a fixpoint solution for
Addr(sort(X))

IF'rom the above analysis, we can conclude that sort(N}) can be accomplished in place. Note that this

process is both subtle and easily negated: if the function rcverse is defined in a different way, say:
for i:1..n be N [n-r/+1)

then an additional areay is needed and one cannot conclude that <orf can be done in-place.
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7. Experimental results
A compiler for a substantial part of SAL has been implemented to verify the effectiveness of the
approach. This compiler generates an intermediate code called UCODE and has many other aspects we

have not discussed. They are fully covered in a thesis [7].

The timings for the following programs on a MicroVax-II (without counting the output times except

when negligible) were collected using the UNIX téme command.

o Bubblesort: sorts an array of 1000 elements.

o Life program: 500 iterations on a board 10 by 10 (with border 12 by 12)

e Matrix multiply: of two 100 by 100 integer matrices

e 8 queens: Finds all the 92 solutions.

e pussle: finds the solution. This is a very highly recursive and computationally demanding
program for solving a three-dimensional puzzle. Often used for benchmarking C and other
languages on workstations.

¢ quicksort: sorts the same array as the bubblesort does(1000 elements)

e bitonic sort: sorts an array of 1024 elements(has to be a power of 2)

e perm: counts the number of permutations of an array of 7 elements. This is iterated 5 times.

¢ cyk: the Cocke-Younger-IKasami algorithm parses an input string of 128 «’s for the following
ambiguous grammar:

A—a

A - AA

o SIMPLE: transliteration of the NEWRZ program, used in hydrodynamic calculations,
considered by Ellis [6]

The user exccution times{without 1/0) in seconds are given in Table 7-1. The various optimization levels

are as follows:
e No Opt: No optimization was done
o Optl: All optimizations with no rangecheck elimination.
o Opt2: Al optimizations with rangecheck elimination by analysis,
o Optd: All optimizations with rongechecking turned ol
o Optt: All optimizations plus some very simple optimization on UCODIE generated by
tnspection of code (peep-hole optimization in all the examples and | invariante moved ty puzzle

and alrere moaltiply)

e pe -O: Bxcention time for Berkeley Paseal o its highest optimization Jevel
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| INo Opt |Opt1  |0pt2 |Gpt3 {0pt4 Ipc -0 |%time|
|Bsort 11913.2 [26.86 |17.5 117.5 |5.8(*) 114.9 | 390%
ILife 123.4 |22.6 [18.4 |1B.4 |14.5 8.2 1177%
|mm |72.8 |82.2 {48.2 |48.2 127.7 132.3 | 86%
I8 1.3 1.8 1.2 1.0 |0.8 |13.4 | 23%
|simple 119.9 [1.6 1.8 1.2 f1.0 1.1 | 91%

leyk |68.0 156.9 141.9 189.0 (30.1 18.1  |187%
lpuzz 1393.6 [32.6 130.7 (24.0 |18.8 |15.8(+)|119%
lquick [12.5 |2.8 |12.8 1.8 1.2 1.8 | 92%
Ibitonici14.3 (2.9 12.9 12.5 2.2 11.8 |138%
lperm 5.5 13.5 3.5 2.5 j2.3 2.5 | 92%

(). Time with UOPT
(+): The Pascal version is faithful to the SAL version; if this 18 not
attempted, we get a time of 13.3s

Table 7-1: Execution times of benchmarks in SAL and Berkeley Pascal.

We list also Z%time which is Opt4/pc -O.

It must be mentioned that UOPT [4], which is a UCode to UCode optimizer, could not be used except
for bubblesort. Hence, there is substantial possibility for improvement in the execution times by use of
register allocation, peephole optimization and other standard optimizations considered in compilers for
imperative languages [1]. The execution times for bubblesort with and without UOPT are instructive. We
believe that the timings could be improved by as much as 50% or more with an UCODE to UCODE

optimizer.

To give another idea for the possibilities for improvement, we have optimised the UCODE generated by

looking just for the simplest store-load peephole optimizations. Opt4 in the table refers to peephole

et

R Qo g p S PN ol W aTo e | Y o

optimization done by inspection. In 2 cases {puzzle, matrix multiply) one invariant has been moved out of
the loops. Kven with all these handicaps, iv is remarkable that we report execution times for six out of
ten programs better than the best timings for Berkeley Pascal (pe -O). The program for life and eyk

suffer because of the inability to define arrays partinlly in the SAL language.

»
8. Conclusions
It is very gratifying to see Tairly theoretical approaches like abstract interpretation have such a direct

hearing on critical issues like copy climination.
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